Epoxide Opening-Induced Tandem 8-Azabicyclo[3.2.1]octane to 6-Azabicyclo[3.2.1]octane Rearrangement-**Iminium Allylation:** Synthesis of (\pm) -Peduncularine

David M. Hodgson,*,† Ruth E. Shelton,† Thomas A. Moss,† and Mouloud Dekhane‡

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K., and AstraZeneca, Silk Road Business Park, Charter Way, Macclesfield SK10 2NA, U.K.

*da*V*id.hodgson@chem.ox.ac.uk*

Received April 25, 2010

ORGANIC LETTERS **2010 Vol. 12, No. 12 ²⁸³⁴**-**²⁸³⁷**

An efficient Lewis acid induced nitrogen-driven rearrangement iminium-trapping cascade from an epoxytropinone 3 gives a 7-allylated 6-azabicyclo[3.2.1]octan-3-one 2, which is converted into the alkaloid ((**)-peduncularine (1).**

(-)-Peduncularine (**1**) (Scheme 1), the first *Aristotelia* alkaloid isolated, was originally obtained from the Tasmanian shrub *A*. *peduncularis* and assigned by Bick and co-workers as an indole-pyrrolizidine in 1971 ;¹ degradative and more detailed spectroscopic studies led them to propose the correct structure in 1979.² Although its biosynthetic precursors are, in common with many indole alkaloids, considered to be tryptamine and a terpenoid unit, 3 peduncularine exhibits an unusual 6-azabicyclo[3.2.1]oct-3-ene core with a 7-*exo*- (indol-3-yl)methylene substituent and has proved a popular target for synthetic studies. Klaver, Hiemstra, and Speckamp reported the first synthesis of $(-)$ -peduncularine in 1989, which unambiguously confirmed the structural reassignment;⁴ however, stereochemistry at C-7 was not controlled. Four formal syntheses have subsequently appeared targeting intermediates in this route⁵ with one, reported by Roberson and Woerpel, being later extended to a racemic total synthesis and which introduced the C-7 stereocenter will full control.⁶ Kitamura and co-workers have recently reported another total synthesis of (\pm) -peduncularine.⁷ A variety of strategies have been used in the above studies to form the bicyclic core of

[†] University of Oxford.

[‡] AstraZeneca.

⁽¹⁾ Bick, I. R. C.; Bremner, J. B.; Preston, N. W.; Calder, I. C. *J. Chem. Soc., Chem. Commun.* **1971**, 1155–1156.

⁽²⁾ Ros, H.-P.; Kyburz, R.; Preston, N. W.; Gallagher, R. T.; Bick, I. R. C.; Hesse, M. Helv. Chim. Acta 1979, 62, 481-487.

I. R. C.; Hesse, M. *Hel*V*. Chim. Acta* **¹⁹⁷⁹**, *⁶²*, 481–487. (3) (a) Bick, I. R. C.; Hai, M. A. In *The Alkaloids*; Brossi, A., Ed.; Academic Press: London, 1985; Vol. 24, pp 113-151. (b) Borschberg, H.- J. In *The Alkaloids*; Cordell, G. A., Ed.; Academic Press: London, 1996; Vol. 48, pp 191-248.

⁽⁴⁾ Klaver, W. J.; Hiemstra, H.; Speckamp, W. N. *J. Am. Chem. Soc.* **1989**, *111*, 2588–2595.

^{(5) (}a) Rigby, J. H.; Meyer, J. H. *Synlett* **1999**, *S1*, 860–862. (b) Roberson, C. W.; Woerpel, K. A. *Org. Lett.* **2000**, *2*, 621–623. (c) Lin, X.; Stien, D.; Weinreb, S. M. *Tetrahedron Lett.* **2000**, *41*, 2333–2337. (d) Washburn, D. G.; Heidebrecht, R. W., Jr.; Martin, S. F. *Org. Lett.* **2003**, *5*, 3523–3525.

⁽⁶⁾ Roberson, C. W.; Woerpel, K. A. *J. Am. Chem. Soc.* **2002**, *124*, 11342–11348.

⁽⁷⁾ Kitamura, M.; Ihara, Y.; Uera, K.; Narasaka, K. *Bull. Chem. Soc. Jpn.* **2006**, *79*, 1552–1560.

peduncularine:8 four approaches used ring closure onto an existing ring (Speckamp, Roberson and Woerpel, Weinreb, and Martin) (Scheme 1), whereas Rigby and Meyer utilized a $[6 + 2]$ cycloaddition,^{5a} and Kitamura formed and then fragmented a tricyclic intermediate.⁷ In the present paper, we communicate a cascade rearrangement process to access a 7-allylated 6-azabicyclo[3.2.1]octan-3-one, which is subsequently converted to peduncularine.

With the electrophile-induced rearrangement of 8-azabicyclo[3.2.1]octa-2,6-dienes to 6-azabicyclo[3.2.1]oct-2-enes reported by Davies and Cao in mind,⁹ we envisaged that readily accessible epoxytropinone **3**¹⁰ (Scheme 2) could un-

Scheme 2. Strategy to Peduncularine

dergo a Lewis acid assisted, nitrogen-driven (formal) 1,2 shift (shown in **4**) to generate intermediate iminium **5**. By analogy to the trapping of a related iminium in Roberson and Woerpel's total synthesis,⁶ intermediate iminium 5 should be capable of interception by allyltrimethylsilane¹¹ to generate the 7-allylated 6-azabicyclo[3.2.1]octan-3-one **2**, possessing potentially suitable functionality for conversion to peduncularine.

So as to examine the above strategy, epoxytropinone **3** was prepared following the procedure of Mann and de Almeida Barbosa¹⁰ with slight modifications.¹² This chemistry involves $[4 + 3]$ cycloaddition between commercially available *N*-methoxycarbonyl pyrrole¹³ and 1,1,3,3-tetrabromoacetone¹⁴ to provide 8-azabicyclo^[3.2.1]oct-6-en-3-one **6** (36%), which was subsequently epoxidized with methyl(trifluoromethyl)dioxirane to give *exo*-epoxytropinone **3** (87%, Scheme 3). Pleasingly, we found that epoxytropinone **3**

cleanly underwent the desired rearrangement-allylation to give 6-azabicyclo[3.2.1]octan-3-one **2** (80%) following reaction with TMSOTf (3 equiv), allyltrimethylsilane (1.1 equiv), and 2,6-lutidine (1.1 equiv) in CH_2Cl_2 at rt for 16 h (Scheme 3). Attempts to use cat. TMSOTf resulted in no reaction, whereas other variations to the above conditions (Lewis acid, solvent, temperature, reaction time) were detrimental to the yield. The *exo*-disposition of the allyl group was established by X-ray crystallographic analysis of a diol derived from reduction of ketone **2**. ¹² Despite the presence of the *syn* oxy substitutent on the one-carbon bridge of the putative iminium **7**, ¹⁵ *exo*-face allylation appeared to be the sole reaction

⁽⁸⁾ For other strategies to 6-azabicyclo[3.2.1]oct-3-enes, see: (a) Holmes, A. B.; Kee, A.; Ladduwahetty, T.; Smith, D. F. *Chem. Commun.* **1990**,

^{1412–1414. (}b) Magnus, P.; Ródriguez-López, J.; Mulholland, K.; Matthews,

I. *Tetrahedron* **1993**, *49*, 8059–8072. (c) Yeung, Y.-Y.; Hong, S.; Corey, E. J. *J. Am. Chem. Soc.* **2006**, *128*, 6310–6311.

⁽⁹⁾ Davies, H. M. L.; Cao, G. *Tetrahedron Lett.* **1998**, *39*, 5943–5946.

pathway; even on scale-up (using 8 g of epoxytropinone **3**) none of the *endo*-addition product was observed.

With the viability of the rearrangement-allylation of epoxytropinone **3** established, attention turned to the introduction of the endocyclic $(C-3-C-4)$ double bond present in peduncularine. We considered that regioselective alkene installation in the desired sense should be possible using an enolization strategy with ketone **2**, due to a potential activating (acidifying) effect of the carbamate functionality. While several avenues based on this theme were investigated, the following sequence was developed to access endocyclic alkene 12 (Scheme 4). Bromination (NBS/NaHCO₃) of a

Scheme 4. Installation of the Endocyclic Alkene from Ketone **2**

regioisomeric mixture of crude silyl enol ethers, formed from TBS-protected ketone **8** using LTMP/Me₃SiCl, gave a chromatographically separable mixture of bromoketones **9** (25%) and **10** (51%). The undesired 2-bromoketone **9** could be easily debrominated with Zn/Cu couple to retrieve starting ketone **2** (95%) for reuse. Reduction of the 4-bromoketone **10** using NaBH₄ in MeOH/THF (1:1) at -78 °C followed by careful quenching with 1 M aq HCl at 0 °C gave a single bromohydrin **11** (93%, assigned as the di-*exo*-isomer on the basis of NOE studies¹² and a related reduction in our

synthesis of ibogamine¹⁶). Bromohydrin 11 underwent a Boord-like elimination¹⁷ using Zn dust in AcOH at reflux to give the desired endocyclic alkene **12** (80%); rupture of the bicyclic system arising from elimination toward the carbamate was not observed.

Indole construction from alkene **12** (Scheme 5) employed several transformations similar to those found in

the later stages of Roberson and Woerpel's peduncularine synthesis; their route proceeded through an intermediate differing from alkene **12** at the one-carbon bridge (by virtue of a directly attached (and epimeric) dimethylphenylsilyl group) and with trimethylsilylethoxycarbonyl protection at nitrogen.⁶ Hydroboration/oxidation of the terminal alkene present in alkene **12** gave alcohol **13** (95%), and the derived aldehyde **14**, formed (84%) using cat. TPAP/NMO, was converted into the corresponding 1,3-dioxane **15** (70%), the latter for protection during the next two steps and to potentially improve reaction efficiency in the following Fischer indole reaction.¹⁸ Carbamate deprotection with concomitant desilylation of 1,3-dioxane **15** was achieved using KOH in refluxing i -PrOH to provide a crude amino alcohol,¹⁹ which underwent reductive amination²⁰ to install the $N-i$ -Pr group giving alcohol **16** (78% yield from 1,3-dioxane **15**).

⁽¹⁰⁾ Mann, J.; de Almeida Barbosa, L.-C. *J. Chem. Soc., Perkin Trans. 1* **1992**, 787–790.

⁽¹¹⁾ For recent reviews on *N*-acyl iminium chemistry, see: (a) Yazici, A.; Pyne, S. G. *Synthesis* **2009**, 339–368. (b) Yazici, A.; Pyne, S. G. *Synthesis* **2009**, 513–541.

⁽¹²⁾ See Supporting Information for details.

⁽¹³⁾ Hodge, P.; Rickards, R. W. *J. Chem. Soc.* **1963**, 2543–2545.

⁽¹⁴⁾ Kim, H.; Hoffman, H. M. R. *Eur. J. Org. Chem.* **2000**, 2195–2220. (15) Silylenol ether formation from the ketone functionality in epoxytropinone **3** would be reasonably anticipated under the reaction conditions used, and is likely-though not certain (see: Murata, S.; Suzuki, M.; Noyori, R. *Bull. Chem. Soc. Jpn.* **¹⁹⁸²**, *⁵⁵*, 247–254)-to precede the rearrangement.

⁽¹⁶⁾ Hodgson, D. M.; Galano, J.-M. *Org. Lett.* **2005**, *7*, 2221–2224.

^{(17) (}a) Swallen, L. C.; Boord, C. E. *J. Am. Chem. Soc.* **1930**, *52*, 651– 660. (b) For a review, see: Schlosser, M. In *Houben-Weyl: Methoden der organischen Chemie*; Thieme Verlag: Stuttgart, 1972; Vol. V/lb, pp $204 - 219$

⁽¹⁸⁾ Bidylo, T. I.; Yurovskaya, M. A. *Chem. Heterocycl. Compd.* **2008**, *44*, 379–418.

Fischer indole synthesis^{18,21} from alcohol **16** furnished indole **17** in 72% yield (Scheme 5). Indole **17** (epimeric at the hydroxyl to an intermediate in Roberson and Woerpel's synthesis) 6 was oxidized under modified Parikh-Doering conditions,²² to give ketone 18 in 75% yield, completing a formal synthesis. The final methylenation step was repeated using freshly prepared Tebbe reagent,²³ which provided (\pm) peduncularine in 59% yield (lit.⁶ 56%) and with data fully consistent with that previously reported.¹²

(21) Chen, C.-Y.; Senanayake, C. H.; Bill, T. J.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. *J. Org. Chem.* **1994**, *59*, 3738–3741.

(22) (a) Parikh, J. R.; Doering, W.; von, E. *J. Am. Chem. Soc.* **1967**, *89*, 5505–5507. (b) Chen, L.; Lee, S.; Renner, M.; Tian, Q.; Nayyar, N. *Org. Process Res. De*V*.* **²⁰⁰⁶**, *¹⁰*, 163–164. (c) Gerasyuto, A. I.; Hsung, R. P. *J. Org. Chem.* **2007**, *72*, 2476–2484.

(23) (a) Cannizzo, L. F.; Grubbs, R. H. *J. Org. Chem.* **1985**, *50*, 2386– 2381. (b) Roberson, C. W. *Ph.D. Dissertation*, University of California, Irvine, 2001; pp 129-130.

In summary, a synthesis of (\pm) -peduncularine has been completed in 15 steps from commercially available materials. The key transformation is an efficient Lewis acid induced nitrogen-driven rearrangement iminium-trapping cascade from an easily accessible epoxytropinone **3** to give the more unusual 6-azabicyclo[3.2.1]octane system present in the alkaloid **1**. Studies to render the approach asymmetric, by enantioselective desymmetrization of the achiral epoxytropinone **3**, are in progress and will be reported in due course.

Acknowledgment. We thank the EPSRC and AstraZeneca for a CASE award (to R.E.S), and Dr. A. Cowley (Oxford) for performing X-ray analysis. We also thank Prof. K. A. Woerpel (Irvine) for his correspondence concerning methylenation of ketone **18**.

Supporting Information Available: Experimental procedures for the preparation of new compounds and characterization data, including ${}^{1}H$ and ${}^{13}C$ NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL100943J

⁽¹⁹⁾ Extraction using 10% *i*-PrOH in CHCl3 (*The Synthetic Organic Chemist's Companion*; Pirrung, M. C., Ed.; John Wiley & Sons: New York, 2007; p 109) was found to be essential to ensure a good recovery of the crude polar amino alcohol.

⁽²⁰⁾ Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. *J. Org. Chem.* **1996**, *61*, 3849–3862.